Emission Performance of a Micro Gas Turbine LPP-Combustor With Fuel Film Evaporation

Abstract

The present paper describes the emission performance of a newly designed liquid fuelled micro gas turbine combustor. In order to reduce pollutant emissions, in particular nitrogen oxides NOx, lean premixed pre-vaporized combustion is utilized. Both, combustor inlet pressure and temperature are very low due to the thermodynamic cycle conditions chosen. As a consequence, the heat available for fuel spray evaporation is not sufficient. The present combustor concept therefore uses fuel film evaporation on the hot inner surface of a premix tube. The heat for evaporating the liquid fuel film is provided by the outer counter flow of hot exhaust gases. To establish almost adiabatic conditions within the reaction zone the flame tube features a multi-layered design, consisting of ceramic rings forming the inner wall, an insulation compliant layer, and the outer metal casing.
To demonstrate the potential for reducing pollutant emissions overall NOx and CO concentrations of the exhaust gases have been measured and analyzed. The impact of combustor loading parameter, equivalence ratio, staging of the combustion, and ratio between calculated reaction times and mean residence times on the formation of pollutant emissions is investigated in detail. Furthermore, the impact of the flame tube volume on pollutant emissions and combustion stability is considered at various operating conditions. Measured pollutant emissions indicate the great potential for pollutant reduction that is associated with the specific geometry of the combustor.